
www.ijcrt.org © 2021 IJCRT | Volume 9, Issue 12 December 2021 | ISSN: 2320-2882

IJCRT2112243 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org c373

THE DEMONSTRATION POINTERS TO POST

GRADUATE STUDENTS

ABSTRACT

A Pointer in C language is a variable which holds the address of another variable of same data type.

Pointers are used to pierce memory and manipulate the address. Pointers are one of the most distinct

and instigative features of C language. It provides power and inflexibility to the language. Although

pointers may appear a little confusing and complicated in the morning, but trust me, once you

understand the conception, you'll be suitable to do so much more with C language. Before we start

understanding what pointers are and what they can do, let's start by understanding what does" Address

of a memory position"means? Its done with compilers

 Keywords pointers, c language, compilers.

1. PREFACE

The Pointer in C, is a variable that stores address of another variable. A pointer can also be used to

relate to another pointer function. A pointer can be incremented/ decremented, i.e., to point to the

coming/ former memory position. The purpose of pointer is to save memory space and achieve briskly

prosecution time.

2. LITERATURE REVIEW

In computer wisdom, a pointer is an object in numerous programming languages that stores a memory

address. This can be that of another value located in computer memory, or in some cases, that of

memory- counterplotted computer tackle. A pointer references a position in memory, and carrying the

value stored at that position is known as dereferencing the pointer. As an analogy, a runner number in

a book's indicator could be considered a pointer to the corresponding runner; dereferencing such a

pointer would be done by flipping to the runner with the given runner number and reading the textbook

plant on that runner. The factual format and content of a pointer variable is dependent on the

underpinning computer armature.

Thakur Janhavee Dipak Jadhav Mrunali Nandkumar Jadhav Ankita Mahadev Mohite Sonali Ravindra

Msc IT Department CS &IT Msc IT Department CS &IT Msc IT Department CS &IT Msc IT Department CS &IT

GMVSC, Tala GMVSC, Tala GMVSC, Tala GMVSC, Tala

 Prof. Raghvendra Singh

 Assistant Professor GMVSC & GMVIT

 University of Mumbai

http://www.ijcrt.org/

www.ijcrt.org © 2021 IJCRT | Volume 9, Issue 12 December 2021 | ISSN: 2320-2882

IJCRT2112243 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org c374

Using pointers significantly improves performance for repetitious operations, like covering iterable data

structures (e.g. strings, lookup tables, control tables and tree structures). In particular, it's frequently

much cheaper in time and space to copy and dereference pointers than it's to copy and pierce the data

to which the pointers point.

Pointers are also used to hold the addresses of entry points for called subroutines in procedural

programming and for run- time linking to dynamic link libraries (DLLs). In object- acquainted

programming, pointers to functions are used for binding styles, frequently using virtual system tables.

A pointer is a simple, more concrete perpetration of the further abstract reference data type. Several

languages, especially low- position languages, support some type of pointer, although some have further
restrictions on their use than others. While" pointer"has been used to relate to references in general, it

more duly applies to data structures whose interface explicitly allows the pointer to be manipulated

(arithmetically via pointer computation) as a memory address, as opposed to a magic cookie or

capability which doesn't allow similar. (citation demanded) Because pointers allow both defended and

vulnerable access to memory addresses, there are pitfalls associated with using them, particularly in the

ultimate case. Primitive pointers are frequently stored in a format analogous to an integer; still, trying

In 1955, Soviet computer scientist Kateryna Yushchenko constructed the Address programming

language that made possible indirect addressing and addresses of the topmost rank – analogous to

pointers. This language was considerably used on the Soviet Union computers. Still, it was unknown

outside the Soviet Union and generally Harold Lawson is credited with the invention, in 1964, of the

pointer. (2) In 2000, Lawson was presented the Computer Pioneer Award by the IEEE" (f) or contriving

the pointer variable and introducing this generality into PL/ I, thus furnishing for the first time, the

capability to flexibly treat linked lists in a general- purpose high- position language". (3) His seminal

paper on the generalities appeared in the June 1967 issue of CACM entitled PL/ I List Processing.

According to the Oxford English Dictionary, the word pointer first appeared in print as a mound pointer

in a technical memorandum by the System Development Corporation.

Formal structure

In computer wisdom, a pointer is a kind of reference.

A data primitive (or just primitive) is any detail that can be read from or written to computer memory

using one memory access (for case, both a byte and a word are barbarians).

A data aggregate (or just aggregate) is a group of barbarians that are logically conterminous in memory

and that are viewed collectively as one detail (for case, an aggregate could be 3 logically conterminous

bytes, the values of which represent the 3 coordinates of a point in space). When an aggregate is entirely

composed of the same type of primitive, the aggregate may be called an array; in a sense, amulti-byte

word primitive is an array of bytes, and some programs use words in this way.

In the terrain of these delineations, a byte is the smallest primitive; each memory address specifies a

different byte. The memory address of the original byte of a detail is considered the memory address

(or base memory address) of the entire detail.

A memory pointer (or just pointer) is a primitive, the value of which is intended to be used as a memory

address; it's said that a pointer points to a memory address. It's also said that a pointer points to a detail

(in memory) when the pointer's value is the detail's memory address.

More generally, a pointer is a kind of reference, and it's said that a pointer references a detail stored

nearly in memory; to gain that detail is to dereference the pointer. The point that separates pointers

from other kinds of reference is that a pointer's value is meant to be interpreted as a memory address,

which is a rather low- position generality.

http://www.ijcrt.org/

www.ijcrt.org © 2021 IJCRT | Volume 9, Issue 12 December 2021 | ISSN: 2320-2882

IJCRT2112243 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org c375

References serve as a position of indirection A pointer's value determines which memory address (that

is, which datum) is to be used in a calculation. Because indirection is a fundamental aspect of

algorithms, pointers are constantly expressed as a fundamental data type in programming languages; in

statically (or strongly) compartmented programming languages, the type of a pointer determines the

type of the detail to which the pointer points.

Architectural points

Pointers are a truly thin abstraction on top of the addressing capabilities handed by utmost modern

architectures. In the simplest scheme, an address, or a numeric index, is assigned to each unit of memory

in the system, where the unit is generally also a byte or a word – depending on whether the architecture
is byte-addressable or word-addressable – effectively converting all of memory into a truly large array.

The system would also also give an operation to recoup the value stored in the memory unit at a given

address (generally exercising the machine's general purpose registers).

In the usual case, a pointer is large enough to hold farther addresses than there are units of memory in

the system. This introduces the possibility that a program may essay to pierce an address which

corresponds to no unit of memory, either because not enough memory is installed (i.e. beyond the range

of available memory) or the architecture does not support analogous addresses. The first case may, in

certain platforms analogous as the Intel x86 architecture, be called a segmentation fault (segfault). The

alternate case is possible in the current performance of AMD64, where pointers are 64 bit long and

addresses only extend to 48 bits. Pointers must conform to certain rules (canonical addresses), so if

anon-canonical pointer is dereferenced, the processor raises a general protection fault.

On the other hand, some systems have farther units of memory than there are addresses. In this case, a

more complex scheme analogous as memory segmentation or paging is employed to use different

corridor of the memory at different times. The last incarnations of the x86 architecture support up to 36

bits of physical memory addresses, which were colluded to the 32- bit direct address space through the

PAE paging medium. Thus, only1/ 16 of the possible total memory may be entered at a time. Another

illustration in the same computer family was the 16- bit protected mode of the 80286 processor, which,

though supporting only 16 MB of physical memory, could pierce up to 1 GB of virtual memory, but the

combination of 16- bit address and member registers made piercing further than 64 KB in one data

structure clumsy.

In order to give a harmonious interface, some architectures give memory- colluded I/ O, which allows

some addresses to relate to units of memory while others relate to device registers of other bias in the

computer. There are analogous generalities analogous as train counterpoises, array pointers, and remote

object references that serve some of the same purposes as addresses for other types of objects.

3. PERPETRATION OF C

 Address in C

 Whenever a variable is defined in C language, a memory position is assigned for it, in which it's value will

be stored. We can fluently check this memory address, using the & symbol.

 Still, also & var will give it's address, If var is the name of the variable.

 Let's write a small program to see memory address of any variable that we define in our program.

#include<stdio.h>

void main()

{

 int var = 7;

 printf("Value of the variable var is: %d\n", var);

 printf("Memory address of the variable var is: %x\n", &var);

}

Copy

http://www.ijcrt.org/

www.ijcrt.org © 2021 IJCRT | Volume 9, Issue 12 December 2021 | ISSN: 2320-2882

IJCRT2112243 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org c376

Value of the variable var is: 7

Memory address of the variable var is: bcc7a00

You must have also seen in the function scanf(), we mention &var to take user input for any variable var.

scanf("%d", &var);

Copy

This is used to store the user inputted value to the address of the variable var.

Concept of Pointers

 Whenever a variable is declared in a program, system allocates a positioned an address to that variable in
the memory, to hold the assigned value. This position has its own address number, which we just saw over.

Let us assume that system has allocated memory location 80F for a variable a.

int a = 10;

We can access the value 10 either by using the variable name a or by using its address 80F.

The question is how we can access a variable using it's address? Since the memory addresses are also just

numbers, they can also be assigned to some other variable. The variables which are used to hold memory

addresses are called Pointer variables.

A pointer variable is therefore nothing but a variable which holds an address of some other variable. And

the value of a pointer variable gets stored in another memory location.

Pointers in C are easy and fun to learn. Some C programming tasks are performed more easily with pointers,

and other tasks, such as dynamic memory allocation, cannot be performed without using pointers. So it

becomes necessary to learn pointers to become a perfect C programmer. Let's start learning them in simple

and easy steps.

As you know, every variable is a memory location and every memory location has its address defined

which can be accessed using ampersand (&) operator, which denotes an address in memory. Consider the

following example, which prints the address of the variables defined −

#include <stdio.h>

int main () {

 int var1;

 char var2[10];

 printf("Address of var1 variable: %x\n", &var1);

 printf("Address of var2 variable: %x\n", &var2);

 return 0;

}

When the above code is compiled and executed, it produces the following result −

Address of var1 variable: bff5a400

Address of var2 variable: bff5a3f6

What are Pointers?

A pointer is a variable whose value is the address of another variable, i.e., direct address of the memory

location. Like any variable or constant, you must declare a pointer before using it to store any variable

address. The general form of a pointer variable declaration is −

http://www.ijcrt.org/

www.ijcrt.org © 2021 IJCRT | Volume 9, Issue 12 December 2021 | ISSN: 2320-2882

IJCRT2112243 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org c377

type *var-name;

Here, type is the pointer's base type; it must be a valid C data type and var-name is the name of the pointer

variable. The asterisk * used to declare a pointer is the same asterisk used for multiplication. However, in

this statement the asterisk is being used to designate a variable as a pointer. Take a look at some of the valid

pointer declarations −

int *ip; /* pointer to an integer */

double *dp; /* pointer to a double */

float *fp; /* pointer to a float */

char *ch /* pointer to a character */
The actual data type of the value of all pointers, whether integer, float, character, or otherwise, is the

same, a long hexadecimal number that represents a memory address. The only difference between pointers

of different data types is the data type of the variable or constant that the pointer points to.

How to Use Pointers?

There are a few important operations, which we will do with the help of pointers very frequently. (a) We

define a pointer variable, (b) assign the address of a variable to a pointer and (c) finally access the value at

the address available in the pointer variable. This is done by using unary operator * that returns the value of

the variable located at the address specified by its operand. The following example makes use of these

operations −

Live Demo

#include <stdio.h>

int main () {

 int var = 20; /* actual variable declaration */

 int *ip; /* pointer variable declaration */

 ip = &var; /* store address of var in pointer variable*/

 printf("Address of var variable: %x\n", &var);

 /* address stored in pointer variable */

 printf("Address stored in ip variable: %x\n", ip);

 /* access the value using the pointer */

 printf("Value of *ip variable: %d\n", *ip);

 return 0;

}

When the above code is compiled and executed, it produces the following result −

Address of var variable: bffd8b3c

Address stored in ip variable: bffd8b3c

Value of *ip variable: 20

NULL Pointers

It is always a good practice to assign a NULL value to a pointer variable in case you do not have an exact

address to be assigned. This is done at the time of variable declaration. A pointer that is assigned NULL is

called a null pointer.

The NULL pointer is a constant with a value of zero defined in several standard libraries. Consider the

following program −

Live Demo

#include <stdio.h>

int main () {

 int *ptr = NULL;

 printf("The value of ptr is : %x\n", ptr);

 return 0;

}

When the above code is compiled and executed, it produces the following result −

The value of ptr is 0

In most of the operating systems, programs are not permitted to access memory at address 0 because that

memory is reserved by the operating system. However, the memory address 0 has special significance; it

signals that the pointer is not intended to point to an accessible memory location. But by convention, if a

pointer contains the null (zero) value, it is assumed to point to nothing.

http://www.ijcrt.org/

www.ijcrt.org © 2021 IJCRT | Volume 9, Issue 12 December 2021 | ISSN: 2320-2882

IJCRT2112243 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org c378

To check for a null pointer, you can use an 'if' statement as follows −

if(ptr) /* succeeds if p is not null */

if(!ptr) /* succeeds if p is null */

Pointers in Detail

Pointers have many but easy concepts and they are very important to C programming. The following

important pointer concepts should be clear to any C programmer −

Concept & Description

1 Pointer arithmetic

There are four arithmetic operators that can be used in pointers: ++, --, +, -

2 Array of pointers

You can define arrays to hold a number of pointers.

3 Pointer to pointer

C allows you to have pointer on a pointer and so on.

4 Passing pointers to functions in C

Passing an argument by reference or by address enable the passed argument to be changed in the calling

function by the called function.

5 Return pointer from functions in C

C allows a function to return a pointer to the local variable, static variable, and dynamically allocated

memory as well.

Benefits of using pointers

Below we have listed a few benefits of using pointers:

1. Pointers are more efficient in handling Arrays and Structures.

2. Pointers allow references to function and thereby helps in passing of function as arguments to other

functions.

3. It reduces length of the program and its execution time as well.

4. It allows C language to support Dynamic Memory management.

In the next tutorial we will learn syntax of pointers, how to declare and define a pointer, and using a

pointer.

4.REVIEW CONCLUSION

Pointers are more efficient in handling Arrays and Structures. Pointers allow references to function and

thereby helps in passing of function as arguments to other functions. It reduces length of the program and

its execution time as well. It allows C language to support Dynamic Memory management.

REFERENCES

1. Donald Knuth (1974). "Structured Programming with go to Statements" (PDF). Computing Surveys.

6 (5): 261–301. CiteSeerX 10.1.1.103.6084. doi:10.1145/356635.356640. S2CID 207630080. Archived

from the original (PDF) on August 24, 2009.

2. Reilly, Edwin D. (2003). Milestones in Computer Science and Information Technology. Greenwood

Publishing Group. p. 204. ISBN 9781573565219. Retrieved 2018-04-13. Harold Lawson pointer.

3. "IEEE Computer Society awards list". Awards.computer.org. Archived from the original on 2011-

03-22. Retrieved 2018-04-13.

4. Jump up to:a b Plauger, P J; Brodie, Jim (1992). ANSI and ISO Standard C Programmer

http://www.ijcrt.org/

